3.3.27 \(\int \frac {(c+d x^3)^{3/2}}{x (8 c-d x^3)} \, dx\)

Optimal. Leaf size=73 \[ -\frac {2}{3} \sqrt {c+d x^3}+\frac {9}{4} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )-\frac {1}{12} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {446, 84, 156, 63, 208, 206} \begin {gather*} -\frac {2}{3} \sqrt {c+d x^3}+\frac {9}{4} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )-\frac {1}{12} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x^3)^(3/2)/(x*(8*c - d*x^3)),x]

[Out]

(-2*Sqrt[c + d*x^3])/3 + (9*Sqrt[c]*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/4 - (Sqrt[c]*ArcTanh[Sqrt[c + d*x^3]
/Sqrt[c]])/12

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 84

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p -
 1))/(b*d*(p - 1)), x] + Dist[1/(b*d), Int[((b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*(e + f*x)^(p -
 2))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\left (c+d x^3\right )^{3/2}}{x \left (8 c-d x^3\right )} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {(c+d x)^{3/2}}{x (8 c-d x)} \, dx,x,x^3\right )\\ &=-\frac {2}{3} \sqrt {c+d x^3}-\frac {\operatorname {Subst}\left (\int \frac {-c^2 d-10 c d^2 x}{x (8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{3 d}\\ &=-\frac {2}{3} \sqrt {c+d x^3}+\frac {1}{24} c \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )+\frac {1}{8} (27 c d) \operatorname {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=-\frac {2}{3} \sqrt {c+d x^3}+\frac {1}{4} (27 c) \operatorname {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )+\frac {c \operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{12 d}\\ &=-\frac {2}{3} \sqrt {c+d x^3}+\frac {9}{4} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )-\frac {1}{12} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 73, normalized size = 1.00 \begin {gather*} -\frac {2}{3} \sqrt {c+d x^3}+\frac {9}{4} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )-\frac {1}{12} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^3)^(3/2)/(x*(8*c - d*x^3)),x]

[Out]

(-2*Sqrt[c + d*x^3])/3 + (9*Sqrt[c]*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/4 - (Sqrt[c]*ArcTanh[Sqrt[c + d*x^3]
/Sqrt[c]])/12

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.05, size = 73, normalized size = 1.00 \begin {gather*} -\frac {2}{3} \sqrt {c+d x^3}+\frac {9}{4} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )-\frac {1}{12} \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(c + d*x^3)^(3/2)/(x*(8*c - d*x^3)),x]

[Out]

(-2*Sqrt[c + d*x^3])/3 + (9*Sqrt[c]*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/4 - (Sqrt[c]*ArcTanh[Sqrt[c + d*x^3]
/Sqrt[c]])/12

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 152, normalized size = 2.08 \begin {gather*} \left [\frac {9}{8} \, \sqrt {c} \log \left (\frac {d x^{3} + 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + \frac {1}{24} \, \sqrt {c} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right ) - \frac {2}{3} \, \sqrt {d x^{3} + c}, \frac {1}{12} \, \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right ) - \frac {9}{4} \, \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) - \frac {2}{3} \, \sqrt {d x^{3} + c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(-d*x^3+8*c),x, algorithm="fricas")

[Out]

[9/8*sqrt(c)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + 1/24*sqrt(c)*log((d*x^3 - 2*sqrt(
d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 2/3*sqrt(d*x^3 + c), 1/12*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) - 9/4*s
qrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) - 2/3*sqrt(d*x^3 + c)]

________________________________________________________________________________________

giac [A]  time = 0.18, size = 61, normalized size = 0.84 \begin {gather*} \frac {c \arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{12 \, \sqrt {-c}} - \frac {9 \, c \arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{4 \, \sqrt {-c}} - \frac {2}{3} \, \sqrt {d x^{3} + c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(-d*x^3+8*c),x, algorithm="giac")

[Out]

1/12*c*arctan(sqrt(d*x^3 + c)/sqrt(-c))/sqrt(-c) - 9/4*c*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/sqrt(-c) - 2/3*s
qrt(d*x^3 + c)

________________________________________________________________________________________

maple [C]  time = 0.19, size = 500, normalized size = 6.85 \begin {gather*} -\frac {\left (\frac {2 \sqrt {d \,x^{3}+c}\, x^{3}}{9}+\frac {56 \sqrt {d \,x^{3}+c}\, c}{9 d}+\frac {3 i c \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )}{18 c d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{d^{3} \sqrt {d \,x^{3}+c}}\right ) d}{8 c}+\frac {\frac {2 \sqrt {d \,x^{3}+c}\, d \,x^{3}}{9}-\frac {2 c^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3}+\frac {8 \sqrt {d \,x^{3}+c}\, c}{9}}{8 c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c)^(3/2)/x/(-d*x^3+8*c),x)

[Out]

-1/8/c*d*(2/9*(d*x^3+c)^(1/2)*x^3+56/9*(d*x^3+c)^(1/2)*c/d+3*I*c/d^3*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-
I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I
*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^
(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*
d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3
^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/
3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*
(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))+1/8/c*(2/9*d*x^3*(d*x^3+c)^(1/2)+8/9*c*(d*x^3+c)^(1/2)
-2/3*c^(3/2)*arctanh((d*x^3+c)^(1/2)/c^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}}}{{\left (d x^{3} - 8 \, c\right )} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(3/2)/x/(-d*x^3+8*c),x, algorithm="maxima")

[Out]

-integrate((d*x^3 + c)^(3/2)/((d*x^3 - 8*c)*x), x)

________________________________________________________________________________________

mupad [B]  time = 5.89, size = 89, normalized size = 1.22 \begin {gather*} \frac {\sqrt {c}\,\ln \left (\frac {{\left (\sqrt {d\,x^3+c}-\sqrt {c}\right )}^3\,\left (\sqrt {d\,x^3+c}+\sqrt {c}\right )\,{\left (10\,c+d\,x^3+6\,\sqrt {c}\,\sqrt {d\,x^3+c}\right )}^{27}}{x^6\,{\left (8\,c-d\,x^3\right )}^{27}}\right )}{24}-\frac {2\,\sqrt {d\,x^3+c}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^3)^(3/2)/(x*(8*c - d*x^3)),x)

[Out]

(c^(1/2)*log((((c + d*x^3)^(1/2) - c^(1/2))^3*((c + d*x^3)^(1/2) + c^(1/2))*(10*c + d*x^3 + 6*c^(1/2)*(c + d*x
^3)^(1/2))^27)/(x^6*(8*c - d*x^3)^27)))/24 - (2*(c + d*x^3)^(1/2))/3

________________________________________________________________________________________

sympy [A]  time = 24.74, size = 73, normalized size = 1.00 \begin {gather*} - \frac {9 c \operatorname {atan}{\left (\frac {\sqrt {c + d x^{3}}}{3 \sqrt {- c}} \right )}}{4 \sqrt {- c}} + \frac {c \operatorname {atan}{\left (\frac {\sqrt {c + d x^{3}}}{\sqrt {- c}} \right )}}{12 \sqrt {- c}} - \frac {2 \sqrt {c + d x^{3}}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c)**(3/2)/x/(-d*x**3+8*c),x)

[Out]

-9*c*atan(sqrt(c + d*x**3)/(3*sqrt(-c)))/(4*sqrt(-c)) + c*atan(sqrt(c + d*x**3)/sqrt(-c))/(12*sqrt(-c)) - 2*sq
rt(c + d*x**3)/3

________________________________________________________________________________________